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Abstract
Estimating the shear strength of large in situ rock discontinuities is often required to assess the stability of rock masses. 
This estimation is, however, complicated by the well-known scale effect and the fact that the discontinuity surfaces are only 
partially accessible through traces. A new approach [referred to as the stochastic approach for discontinuity shear strength 
(StADSS)] was recently presented to address these two points. This approach relies on a random field model and a semi-
analytical shear strength model, the latter of which is referred to as the NDSS (Newcastle discontinuity shear strength) model. 
The NDSS model has to be implemented as a numerical code, and because the StADSS model is a Monte Carlo approach 
with hundreds if not thousands of simulations, the computational time to obtain a shear strength distribution is not negligible. 
The objective of this study is to find an efficient alternative to the NDSS model in the form of a continued fraction model 
that can predict the sheared area within a rough discontinuity subjected to direct shearing under constant normal stress as a 
function of the material strength, normal stress applied to the discontinuity and the standard deviation of asperity gradients 
(as the difference in elevation of two points of the surface over the horizontal distance between these points) of the surface. 
Using a 10/90 training/testing split of the dataset, a memetic algorithm-based truncated continued fraction regression (CFR) 
model was formulated. The distribution of CFR predictions was found to be very close to that of the dataset used for train-
ing. Then, the CFR model was tested against experimental data of the sheared area and shear strength (peak and residual) 
obtained from small (90 mm per 90 mm) and large (2 m per 2 m) specimens. It was found that 75% of the predictions fall 
within 20% of the experimental values. The continued fraction regression model can be used as an efficient alternative to the 
semi-analytical NDSS model, provided that it is used within the bounds of variables used to establish it.

Highlights

• A mathematical model was established to predict shear strength of rock joints
• The model is based on continued fraction regression (CFR) and memetic algorithm
• The CFR model was validated against data of peak and residual shear strength
• 75% of the CFR predictions fall within 10% of the experimental data
• The CFR model can be implemented as a spreadsheet with a low computational cost
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1 Introduction

Rock fractures, also referred to as discontinuities, constitute 
zones of weakness in rock masses, whose stability is often 
governed by the geometrical and mechanical properties of 
the fractures. Quantifying the shear strength of large in situ 
discontinuities is hence an essential yet complicated step 
in the stability analysis of rock masses or rock slopes. The 
difficulties of such quantification lie in the fact that the infor-
mation about the discontinuity surface is only partial (visible 
on a trace) and that there exists a scale effect.

In the past, several models have been proposed to predict 
the shear strength of large, rough, in situ discontinuities, with 
the model by Barton (1976) being the most commonly used.

Recently, some of the authors of this paper proposed a new 
approach, named the StADSS (stochastic approach for dis-
continuity shear strength), combining a random field model 
(to create synthetic rock surfaces) and a semi-analytical shear 
strength model (to obtain shear strength estimates), referred to 
as the NDSS (Newcastle discontinuity shear strength) model. 
This approach was validated on a laboratory scale and satis-
factorily applied to one rock discontinuity specimen of 2 m 
per 2 m (Jeffery et al. 2022). This approach is quite versatile 
in nature, in the sense that any suitable random field model 
and shear strength model can be used.

Although the NDSS model proved to yield satisfactory 
shear predictions, it has to be implemented as a numerical 
code because of the large number of data points on a surface 
that must be processed. In addition, because the rationale 
of the StADSS is to test many surfaces, obtaining the dis-
tribution of strength requires considerable time, even more 
so for large surfaces. In this paper, an efficient alternative to 
the implementation of the NDSS model is presented in the 
form of a multivariate regression model trained and validated 
using a dataset of NDSS predictions. More specifically, it is 
proposed to adopt a continued fraction regression (CFR) 
approach, which possesses an excellent ability to capture non-
linear regression problems. For example, CFR models were 
applied to 352 datasets from the physical sciences (Moscato 
et al. 2020b), and they were used to predict the critical tem-
perature of superconducting materials (Moscato et al. 2020a) 
and to model the first performance dates of Shakespearean era 
plays (Moscato et al. 2022). In addition, in a large experiment 
involving 94 datasets and 15 other regression algorithms, the 
CFR method provided an analytic mathematical model for 
each dataset studied and outperformed many state-of-the-art 
regression approaches (Moscato et al. 2021).

In Moscato et al. (2023), this approach was used to find a 
mathematical model of the energy of n electrons on a sphere, 
i.e., a function that closely approximates the value of a solu-
tion to the Thomson problem for different values of n.

Unlike more conventional regression analysis approaches, 
it is possible to rigorously optimise the CFR coefficients to 

obtain more accurate predictions and owing to the memetic 
algorithm procedure, it is also possible to eliminate vari-
ables that only have a marginal effect on the predictions, 
hence yielding simpler model formulations. This means that 
the selection of variables is based on a rigorous and itera-
tive mathematical procedure rather than a user’s subjective 
choice. The objective of this study is to rigorously train and 
test a CFR model that can replace the NDSS model to avoid 
the difficulty of numerically implementing the model and the 
high computational time.

2  Estimation of the Shear Strength 
and the CFR Model

2.1  Shear Strength Estimation

This study is based on the Newcastle discontinuity shear 
strength (NDSS) model proposed by Casagrande et al. (2018). 
The model analyses 3D digitised surfaces, described as a 
structured dataset of positions (X, Y, Z), with X and Y being 
the directions of the mean discontinuity plane and Z being the 
elevation of the data points. For a given surface, the number 
of data points used to describe the morphology of the surface 
depends on the spatial resolution, i.e., the spacing between data 
points in the X and Y directions. To be processed by the NDSS 
model, the 3D surface needs to be triangulated, with the tri-
angles herein referred to as facets (see “Appendix” section for 
more information on triangulation and the definition of facets).

The model provides a semi-analytical prediction of the 
peak and residual shear strength from an estimate of the 
actual contact area within a discontinuity, quantified by 
the number of facets that actively contribute to the gen-
eration of the shear resistance, denoted NCF. Through 
research, it has established that only the steepest areas of 
the surface facing the direction of shearing contribute to 
the shear response (Grasselli 2001; Grasselli et al. 2002; 
Jeffery et al. 2022). The main variables and equations of 
the model are recalled when relevant to this paper, and 
more detailed information is provided in “Appendix” sec-
tion. However, the reader should consult Casagrande et al. 
(2018) for a complete description of the NDSS model.

The objective of this study is to define and validate a mul-
tivariate regression (MVR) model to predict the peak and 
residual shear strength of a rough nonplanar rock discontinu-
ity. Instead of predicting the peak and residual shear strength 
directly, which would require one MVR model for the peak 
strength and one for the residual strength, it is proposed to 
train a single MVR model to predict the number of contribut-
ing facets (NCF), from which it is possible to compute both the 
peak and residual shear strengths as follows (see “Appendix” 
section for derivations and figures, as well as Casagrande et al. 
2018 for more information):
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and

where �p and �r are the peak and residual shear strength, 
respectively, and Aip and Atot are the area of a triangular facet 
projected on the discontinuity plane and the total projected 
discontinuity area, respectively. For 100 mm per 100 m 
samples, as tested by Casagrande et al. (2018), Atot is equal 
to 10,000  mm2. ��

local_i
 is the local normal effective stress 

on a contributing facet, and �′ and c are the effective fric-
tion angle and cohesion of the intact rock, respectively. See 
“Appendix” section for the derivation of ��

local_i
 and Eqs. (1) 

and (2).
NCF is the number of contributing facets on the surface. 

The total number of triangular facets on the surface depends 
on the size of the surface and the spatial resolution, as p.

Note that the material strength is defined here in terms 
of Coulomb parameters (cohesion and friction angle), but 
the strength envelope of rocks is often nonlinear and best 
fitted with a Hoek‒Brown criterion. In such cases, the 
cohesion and friction angle are derived from the Hoek‒
Brown criterion for a given stress state, as per Hoek 
(1983):

where mi and �ci are the material parameter and intact 
unconfined compressive strength of the Hoek–Brown cri-
terion obtained by fitting experimental triaxial data, and �′ 
is defined as:

where h = 1 +
16
(

mi�
�
local_i

+�ci

)

3�cim
2
i

 and � =
1

3

�

90 + atan
�

1
√
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 . 
Casagrande et al. (2018) showed that for a given shearing 
direction, the shear strength prediction by the NDSS model 
depends on the material strength (mi, �ci and the basic fric-
tion angle �b ), the effective normal stress applied to the dis-
continuity ( �′

n ) and the morphology of the discontinuity 
surface. In research conducted by Jeffery et al. (2021), it was 
further shown that for a stationary surface, the shear 
strengths (peak and residual) depend on the standard devia-
tion of asperity gradients rather than on the standard devia-
tion of asperity heights. Consequently, it is proposed that a 

(1)�p =

Aip ⋅

(

c + ��
local_i

tan
(
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)

)

⋅ NCF

Atot

(2)�r = �p −
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�

multivariate regression model that relates NCF to mi, �ci , �b , 
�′
n
 and sdi be established.
Regarding notations, in previous publications by the 

authors (Casagrande et al. 2018; Buzzi and Casagrande 
2018; Jeffery et  al. 2021, 2022, 2023), the standard 
deviation of gradients is denoted �i . The notation is here 
changed to sdi to avoid confusion with stress variables, 
i.e., �ci and �′

n.

2.2  Continued Fraction Regression (CFR) Model

Continued fraction regression (CFR) is a multivariate regres-
sion method that was first introduced by Sun and Moscato 
(2019) and uses an analytic continued fraction representa-
tion for the unknown target function one is trying to model. 
Mathematically, an analytic function is defined as a func-
tion approximated as a power series expansion. One of the 
reasons why the use of continued fraction regression has 
been investigated is that it can provide a simple analytical 
model with low complexity for predicting a target function. 
To define an analytic continued fraction, consider an array 
x of n variables xi:

The multivariate function f (x) can be represented as an 
analytic continued fraction that reads:

where  gi(x) and  hi(x) a re  gi(x) = a
T
i
x + �i  and 

hi(x) = b
T
i
x + �i , respectively. Each function gi(x) is asso-

ciated with a vector ai ∈ ℝ
n and a constant �i ∈ ℝ . The 

same applies to each function hi(x) associated with a vector 
bi ∈ ℝ

n and a constant �i ∈ ℝ . The depth of the CFR func-
tion, denoted d, refers to the largest subscript of function 
g(x) , i.e., gd(x) . Note that at depth d, without losing general-
ity, hd(x) is assumed to be equal to 0.

To define the CFR function, one needs (1) to identify the 
variables (xi) that influence the output and (2) to define the 
coefficients ai and bi for the functions gi(x) and hi(x) that 
yield the best goodness of fit [quantified via the mean square 
error (MSE)] between the prediction and training datasets. 
The aim of continued fraction regression is to provide a 
simple and relatively interpretable analytical model of low 
complexity for predicting a variable that is a nonlinear func-
tion of several variables. Defining the final CFR function 
also referred to as the CFR model, is achieved by applying 
a search and optimisation procedure (a memetic algorithm) 
to training datasets. All technical aspects of the memetic 

(5)x = {x1, x2,… , xn}

(6)
f (x) = go(x) +

ho(x)

g1(x) +
h1(x)

g2(x)+
h2(x)

g3(x)+…
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algorithm are fully detailed in Moscato et al. (2021), and 
only the general principle is recalled here for the benefit of 
the reader.

The memetic algorithm is based on the concept of a popu-
lation structure of optimising agents, which in this case con-
tains three levels and 13 agents, numbered 0–12 (see Fig. 1). 
A feature of this method is that mathematical models (solu-
tions of a mixed combinatorial and nonlinear optimisation 
problem) that have initially been randomly created can be 
progressively selected and improved. The optimisation, evo-
lution and selection of the models occur via rigorous math-
ematical algorithms as described in Moscato et al. (2021).

In this algorithm, two solutions are created for each of 
agents 4–12. The variables of each solution are randomly 
selected from the list of possible input variables, and the coef-
ficient assigned to each variable is randomly selected from 
the range (− 3; 3). For each solution, the coefficients identi-
fied from the memetic algorithm are optimised using a variant 
of the Nelder‒Mead nonlinear optimisation technique (Faj-
far et al. 2017) as a local search operation. As a result, each 
agent has two solutions, the performance of which is assessed 
in terms of the mean squared error (MSE) using the training 
dataset. The solution with the best performance is referred to 
as a “pocket” solution, and the other solution is referred to 
as the “current” solution. Each agent has one pocket solution 
and one current solution. In the evolutionary step of the algo-
rithm, some current solutions are then modified using variation 
operations named recombination and mutation. The objective 
is to create a new offspring as a current solution. If that off-
spring performs better than the best solution, it becomes the 
new pocket solution of the agent.

A mutation operation consists of making random changes 
to the current solution. It can either remove or add a vari-
able from the model. If a variable is added, its coefficient is 
randomly selected in the range (− 3; 3), and a local search is 
applied to attempt to improve the solution in terms of its per-
formance. As indicated by its name, a recombination opera-
tion consists of combining two existing solutions, i.e., two 
different mathematical models, referred to as ‘parent’ solu-
tions, from two different agents. To create a new offspring 
solution to replace the current solution, variables are ran-
domly selected from the union, intersection, or symmetric 

difference of the variables of the parents. If a variable is 
only present in one of the parents, its coefficient is equal 
to the coefficient in the parent solution. If a variable is pre-
sent in both parent solutions, its coefficient is a function of 
both parent coefficients. The Nelder–Mead algorithm is then 
applied to all offspring coefficients for local optimisation. 
In this study, mutation is applied to 10% of the solutions, 
and all current solutions are used as a parent solution for 
recombination.

The best solution or model of agents 4–6 is moved to 
agent 1, that of agents 7–9 is moved to agent 2, and finally, 
the best solution for agents 10–12 is moved to agent 3. The 
best model of agents 1, 2, and 3 is moved to agent 0.

The performance of the final model of agent 0 is then 
reevaluated to account for its complexity. Indeed, the objec-
tive is not only to obtain a model with good performance 
but also to formulate a simple model (for computational effi-
ciency), i.e., a model with the lowest depth and least number 
of variables (the variables that have no strong influence are 
discarded). To achieve this, a delta penalty method is used 
(Sun and Moscato 2019), where the performance of a model 
is evaluated through a corrected mean square error:

where � is arbitrarily selected as 0.1 and N is the number 
of variables used in the model. The more complex the for-
mulation is, the more penalised the model, and the higher 
the corrected MSE. The process of identifying the best-per-
forming model via the memetic algorithm is repeated 200 
times until 200 best-performing models are produced. All 
200 best-performing models are then evaluated in terms of 
MSE_corrected, and the model with the lowest MSE_cor-
rected is retained as the trained model.

Both memetic algorithms and the CFR approach are 
becoming very popular for data science applications (Cotta 
et al. 2018; Moscato and Mathieson 2019; Moscato et al. 
2022). The memetic algorithm was implemented in C++ 
and executed using a computer equipped with a 6 Core 
Intel(R) Core(TM) i7-9750H CPU with a 2.60 GHz clock 
speed and 16.0 GB of RAM running on the Ubuntu 20.04.1 
LTS operating system.

(7)MSEcorrected = MSE × (1 + � × N)

Fig. 1  Memetic algorithm represented as a hierarchical tree (redrawn from Moscato et al. 2021)



Mathematical Modelling of Peak and Residual Shear Strength of Rough Rock Discontinuities Using…

1 3

2.3  Correction for Surface Size and Resolution

As will be detailed in Sect. 3, the synthetic dataset used 
to train and validate the regression model was obtained by 
applying the NDSS model to 2 m per 2 m rough surfaces, 
referred to as reference surfaces (as per Jeffery et al. 2021). 
In the remainder of this paper, the spatial resolution, sur-
face area and number of contributing facets of the reference 
surfaces are identified with a subscript “o”, i.e.,  Reso (equal 
to 1 mm), Ao (equal to 4  m2) and NCFo,, respectively. The 
notations Res, A and NCF refer to surfaces with either another 
size and/or another spatial resolution.

The number of contributing facets predicted by the CFR 
model is only meaningful for the reference surfaces that 
contain 8 × 106 facets. For example, let us consider a fixed 
set of input variables and a fixed set of surface references. 
Assume that the model predicts that 16 × 104 facets are 
sheared. Now consider the same inputs (and hence the same 
model output) but for a surface that contains 8 × 104 facets 
(for example, a 1 m per 1 m surface with a 5 mm spatial 
resolution), the direct application of the CFR model would 
return that there are more sheared facets than the surface 
contains, which is a nonsensical output. The proper way to 
analyse this result is to consider that 16 × 104 facets repre-
sent 2% of the total number of facets of the reference surface 
and the smaller surface with a different spatial resolution 
would also have 2% of its facets sheared. Hence, the proper 
number of contributing facets for the surface to consider 
is NCF = 0.02 × 8 × 104 = 1600 facets. From this number 
and with the projected area of each facet, it is possible to 
compute the shear strength of the surface. To express this 
transformation formally, two corrections are presented in 
Eqs. (8) and (9).

First, the number of contributing facets for the reference 
surface NCFo needs to be multiplied by the surface ratio 
(A/Ao) and resolution ratio  (Reso/Resα)2. Given that Ao = 4 
 m2 and  Reso = 1 mm, we obtain:

where NCFo is the number of contributing facets predicted 
by the CFR model and NCF, A and Res are the number of 
contributing facets, the total area and the spatial resolution 
of the surface being considered, respectively.

In addition, assuming that the spatial resolution is the 
same in the X and Y directions, the projected facet area Aip 
is equal to (see Fig. 9 in “Appendix” section):

Equations (8) and (9) can now be combined with Eqs. 
(1)–(4) to estimate the shear strength of a discontinuity 

(8)NCF = NCFo

(

A

Ao

)(

Reso

Res

)2

= NCFo

(

A

4Res2

)

(9)Aip =
Res2

2

surface with different dimensions and resolutions than those 
of the reference surfaces.

Note that an attempt was made to directly predict the per-
centage of facets that have been sheared using continuous 
fraction regression, but the prediction accuracy was not as 
good as that presented in the remainder of this paper.

3  Training and Validation Datasets

A preliminary study revealed that better predictions can be 
obtained when using ln(NCFo) and tan

(

�b

)

 instead of NCFo 
and �b . Therefore, the tangent of �b was considered in the 
set of independent variables x to predict ln(NCFo).

The  p roces s  o f  ob t a in ing  a  da t a se t  o f 
{ln(NCFo), sdi, �ci, tan(�b),mi, �

�
n} to train and test the CFR 

model is described in detail in the next sections and is sum-
marised as follows:

• First, 474 synthetic rock surfaces were created using 
the 2D LAS random field model used by Casagrande 
et al. (2018). The peak and residual shear strengths of 
these surfaces were estimated using the NDSS model 
with 1000 different combinations {�ci, tan(�b),mi, �

�
n} 

as inputs. This 474,000-point dataset is referred to as the 
raw dataset.

• The original dataset was then reduced to 14,000 data 
points with a specific filtering process to obtain a dataset 
with specific values of sdi . This dataset is referred to as 
the reduced dataset, which is split, and its smaller part, 
comprising 10% of the reduced dataset, is used for the 
training task, and the remaining 90% of the data is used 
for the testing task.

• The 14,000-point dataset was then enriched using meta 
features, a mathematical approach used to increase the 
ability of a model to introduce some powers and roots 
of the input variables and capture nonlinearities. This 
dataset is referred to as the enriched dataset.

• The CFR model was trained with 10% of the samples 
from the enriched dataset, and the remaining 90% of the 
samples were used to test the generalisation performance.

3.1  Raw Dataset

Before elaborating on how the data were created by the com-
bination of the random field model and the NDSS model, it 
is important to specify that research by Jeffery et al. (2021) 
showed that a natural rough rock surface can be decom-
posed into three levels of roughness, namely, large scale 
(L), intermediate scale (I) and small scale (S) roughness 
(see the example in Fig. 2a), which is consistent with the 
rock mechanics literature. The NDSS prediction is strongly 
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governed by the inclination of asperities of the small-scale 
roughness (S). The inclination of asperities is referred to 
as gradients and is calculated as the difference in elevation 
between two adjacent points over the distance between the 
two points parallel to the mean shear plane.

Figure 2, adapted from Jeffery et al. (2021), illustrates 
the key contribution of asperity gradients on a small scale. 
Figure 2a first shows how a trace profile can be decoupled 
into three subprofiles at large, intermediate and small scales. 
The superposition of these three subprofiles gives the original 
profile. Similarly, discontinuity surfaces can be decomposed 
into three levels of roughness (small, intermediate and large).

Figure 2b shows the peak and residual failure criteria 
for a rough surface (referred to as “original”, shown in 
Fig. 2c) and the criteria of the corresponding small-scale 
subsurface (referred to as “small”). The strength enve-
lope of the small-scale surface is only marginally lower 
than that of the original surface, which suggests that most 
of the shear strength, as predicted by the NDSS model, 

comes from the small-scale roughness. Consequently, in 
the remainder of this paper, given the large amount of data 
needed to train and test the regression model, only surfaces 
with small-scale roughness were created.

A total of 474 3D synthetic surfaces (size of 2 m per 
2  m, 1  mm spatial resolution) were generated by the 

Fig. 2  a Example of the decomposition of a trace profile into three 
subprofiles on a large scale, an intermediate scale and a small scale 
(from Jeffery et al. 2021). b Examples of the peak (full symbols) and 
residual (hollow symbols) shear strength envelope obtained from the 

NDSS model for the rough surface shown in c and its small scale 
component. The circle and square symbols correspond to the original 
surface and small-scale subsurface, respectively. c View of the origi-
nal surface

Table 1  Values of input variables used to establish the raw dataset of 
NCFo

Variable Unit Values considered

Surface statistics �2
z

mm2 0.15–0.5 in 0.025 increments
CL mm 2.5–50 mm (32 values of CL)
sdi mm/mm  ~ 0.02 to ~ 0.62

Loading �′
n

MPa 0.005, 0.02, 0.05, 0.08, 0.1, 
0.3, 0.5, 0.8, 1, 2

Rock strength �ci MPa 20, 40, 60, 80, 100
�b

o 20, 25, 30, 35, 40
mi No unit 5, 10, 20, 30
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2-dimensional local average subdivision (2D LAS) random 
field model (Fenton and Vanmarcke 1990). The inputs of 
the 2D LAS (variance of height �2

z
 and correlation length 

CL) were varied to obtain a wide range of roughness val-
ues (see Table 1). The mean value of asperity height is 
0. The standard deviation of the gradient ranges from 
approximately 0.02–0.62.

The peak and residual shear strengths of the 474 synthetic 
surfaces were estimated using the NDSS model for 1000 
combinations of ��

n, �ci,�b and mi resulting from the values 
given in Table 1. The raw dataset hence contains 474,000 
data points.

The range of values given in Table 1 reflects typical 
ranges reported in the literature for sedimentary, igneous, 

and metamorphic rocks (see ISRM R4 Strong Rock field 
estimate strength class, Hoek and Brown 1997; Barton 1973, 
1976; Alejano et al. 2012).

Although it is well recognised in the literature that 
shear strength is related to normal effective stress and rock 
strength parameters (see Barton 1976), roughness is usu-
ally described using the joint roughness coefficient, not the 
standard deviation of gradients. Figure 3a clearly demon-
strates that a strong relation exists between NCFo and sdi for a 
given combination of material parameters. Such a degree of 
correlation was observed for all combinations of input varia-
bles. From this figure, it is suggested that the shear response 
of rough nonplanar discontinuities is strongly controlled by 
the distribution of asperity gradients, and consequently, the 

Fig. 3  Evolution of the number of contributing facets (NCFo) with the 
standard deviation of gradients, sdi . a NCFo values associated with 474 
synthetic surfaces, with a 3rd order polynomial trend line fitting and 
for one combination of variables. b A total of 14 NCFo values were 

obtained by the postprocessing procedure, sampled along the fitted 
trend line at equal increments of sdi and forming the reduced dataset. 
c All NCFo values of the reduced dataset. The upper and lower bounds 
are highlighted
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standard deviation of gradients can be considered an ade-
quate roughness descriptor.

3.2  Reduced Dataset

To train and validate the CFR model, it is preferable to 
have a dataset of manageable size with controlled values 
of standard deviation of gradients, given its significance, 
which is not the case for the raw dataset. For each com-
bination of ( ��

n, �ci,�b and mi) , the evolution of ln(NCFo) 
with sdi was plotted and fitted with a 3rd-order polynomial 
(see Fig. 3a). The polynomial was then used to extract 14 
(ln(NCFo), sdi ) points, including the minimum and maxi-
mum values of sdi and 12 equally spaced (increments of 
0.5) values in between (see Fig. 3b). This process led to a 
dataset of 14,000 points (14 standard deviations and 1000 
material parameters).

Figure 3c presents the values of NCFo as a function of 
sdi of the reduced dataset and shows a large range of varia-
tion, from several hundred facets to several million facets. 
To highlight the influence that other variables have on NCFo, 
the upper and lower bounds of NCFo are plotted with sdi. 
These bounds were obtained using extreme values (within 
the range of Table 1) of ��

n
, �ci,�b and mi.

3.3  Enriched Dataset

The original dataset contains an output (ln(NCFo)) and five 
input variables ( ��

n
, �ci, sdi, tan(�b) and mi). For simplicity 

of formulation and training efficiency, the model does not 
test the powers or roots of the input variables (e.g., m2

i
,m0.5

i
 ), 

as per Eq. (6). To overcome this limitation, the powers and 
roots of the variables are introduced as extra input variables 
associated with the same output. These extra variables are 
generally referred to as “feature engineering” in the area of 
machine learning and data mining. In this study, for each 
independent variable x , the following array x′ of data associ-
ated with the same output (ln(NCFo)) was used:

Tables 2 and 3 show examples of the original dataset and 
enriched dataset.

x
′

=
{

x, x−1, x
1

2 , x−
1

2 , x
1

3 , x
−

1

3 , x2, x−2, x3, x−3
}

Table 2  Example of one original combination of inputs for the fol-
lowing output: ln(NCFo) = 5.690359. sdi, tan(�b) and mi have no unit, 
�′
n
 in MPa, �ci in MPa

Standard deviation of gradients sdi 0.03
Effective normal stress �′

n
0.005

Tangent of basic friction angle tan(�b) 0.466308
Unconfined compressive strength �ci 100
Material parameter mi 20
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Using the powers and roots of variables in feature engi-
neering can provide several advantages, including nonlin-
ear transformations, scaling, feature selection, and feature 
interpretation.

For example, the powers and roots of variables can 
introduce nonlinear transformations that can help capture 
nonlinear relationships between the independent input vari-
ables and the target variable; the square of an input vari-
able may be more relevant to the target variable than the 
variable itself, especially if there is a quadratic relation-
ship between them. The use of meta features has also been 
employed in classification problems (e.g., Rocha de Paula 
et al. 2011; Johnstone et al. 2012). As such, it is a more 
powerful approach than simply considering more data from 
the original dataset.

3.4  Data Sampling for Training and Testing

To create a reduced-size dataset to guide the training 
phase of the CFR method, 10% of the original dataset (a 
total of 1400 samples from the enriched reduced dataset) 
was selected using the following process: the variance of 
the enriched dataset was first computed. Then, 10% of 
the data were randomly sampled, and the variance was 
computed. The sampling process was iterated until the 
variance difference between the original dataset and the 
subset was less than a defined threshold (here 0.01). The 
process iterates until the new dataset meets the variance 
threshold condition. Therefore, it contains 10% of the 
samples, and it is used as the training dataset, while the 
remaining 90% of the samples are used to test the gener-
alisability of the models.

4  Results

4.1  Training and Testing of the CFR Model

A subset of 1400 samples was used to train the continued frac-
tion regression model with depth = {0, 1, 2, 3, 4}, and this 
process was repeated for each depth 25 times. The continued 
fraction regression method executed with the training set identi-
fied the best model when depth = 1. In the following, the CFR 
model is hence referred to as CFR-d1, and it is given as follows:

with

(10)ln
(

NCFo

)

= go
(

x
�
)

+
ho(x

�)

g1(x
�)

with �′
n
 in MPa, �ci in MPa, and sdi in m/m.

Note that mi does not appear in the CFR-d1 model, which 
implies that this variable only has a marginal influence on 
ln(NCFo). However, mi is a relevant parameter that contrib-
utes to the shear strength of the discontinuity, as captured 
in Eqs. (3) and (4), once the number of contributing facets 
is obtained.

The mean squared error (MSE) score of the CFR-d1 
model obtained for the training set was 0.1136, and for the 
test set, it was 0.0424. The performance of the model is 
illustrated in Fig. 4 in terms of the distribution of relative 
error between the prediction from the CFR-d1 model and 
the dataset. The relative error, in percent, is computed as:

where CFR is the value of prediction by the CFR model and 
Data is the value of ln(NCFo) from the training dataset for the 
same set of input variables. A positive error value reflects 
an overestimation, while a negative error corresponds to an 
underestimation. Figure 4 shows that ~ 95% of the CFR pre-
dictions fall within a ±20% error band, which is an excellent 
result.

g
o

(

x
�
)

= 0.497568 ⋅ sd
1

2

i
+ 0.051503 ⋅ �

�
1

3

n − 0.604231

⋅ �
1

3

ci
− 0.125605

h
o

(

x
�
)

= 0.001748 ⋅ tan
2
(

�
b

)

+ 0.017096 ⋅ �
�
1

3

n

+ 0.000020 ⋅ �
1

3

ci
+ 0.002485

g
1

(

x
�
)

= −0.000307 ⋅ sd
1

2

i
+ 0.000973 ⋅ �

�
1

3
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(11)error [%] =
100(CFR − Data)

Data

Fig. 4  Distribution of relative error between the training dataset and 
CFR-d1 prediction, computed from Eq. (11)
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4.2  Comparison Between CFR‑d1 Predictions 
and Experimental Values of the Sheared Area

In this section, the predictions of the trained CFR-d1 model 
are compared to the experimental values of the sheared area 
obtained by Jeffery et al. (2022). The authors conducted a 
series of low normal stress, large scale direct shear tests on a 
series of 2 m per 2 m perfectly matching mortar discontinu-
ity replicates with a 1 mm spatial resolution (total number 
of facets of 8 × 106 ). After each test, estimates of the con-
tact area that contributed to the development of peak shear 
strength were obtained via digital analysis of the damaged 
area.

The direct shear tests were conducted at normal stresses 
�′
n
 of 5, 14, 22 and 31 kPa. In the direction of shearing, the 

whole discontinuity surface was observed to have a stand-
ard deviation of gradients sdi equal to 0.143. The material 
properties of the mortar used to cast the replicas were an 
intact compressive strength ( �ci ), a material constant ( mi ) 
and a basic friction angle ( �b ) of 68.7 MPa, 8.5 and 36.2°, 
respectively. The CFR-d1 model [Eq. (10)] was applied 
using values of normal stress and material parameters 

consistent with the experimental values. The sheared area 
was computed by multiplying the value of NCFo given by 
the CFR-d1 by the area of a facet (0.5  mm2). The values of 
NCFo predicted by the CFR-d1 model are given in Table 4.

Figure 5a presents a comparison of the experimental 
sheared area and that estimated from the CFR-d1 model. 
The results in this figure confirm the observations pre-
sented in Sect. 4.1, in that the predictive ability of the 
CFR-d1 model is excellent. Figure 5b reveals that CFR-
d1 predictions lie within ±10% of the experimental data, 
with only one data point outside that range, with an error 
of − 17% (identified by the arrow in Fig. 5b). Such a good 
agreement is a very strong indication that the CFR-d1 
model is capable of adequately predicting shear strength, 
a hypothesis that will be tested in the next section.

4.3  Comparison Between CFR‑d1 Predictions 
and Experimental Values of Shear Strength

Following the comparison of the CFR-d1 predictions with 
the experimental values of the sheared area obtained by Jef-
fery et al. (2022), testing the predictive ability of the CFR-d1 
model further is proposed by comparing the experimental 
values of peak and residual shear strength obtained by Jef-
fery et al. (2022) for the same surface and those derived 
from the predicted values of ln(NCFo) and Eqs. (1)–(5). The 
predicted shear strength values are given in Table 5.

The experimental and predicted strength values, for both 
peak and residual shear strength, are plotted in Fig. 6, and 

Table 4  Values of NCFo from the CFR-d1 prediction for the 2  m 
per 2  m surface tested by Jeffery et  al. (2022). Input parameters: 
sdi = 0.143, �ci = 68.7 MPa, mi = 8.5, and tan(�b) = 0.732

�′
n
 = 5 kPa �′

n
 = 5 kPa �′

n
 = 14 kPa �′

n
 = 22 kPa �′

n
 = 31 kPa

NCFo 4542 4542 9132 12,727 16,502

Fig. 5  a Evolution of the experimental and CFR-d1 predicted values 
of a sheared area with normal effective stress. b Comparison of the 
experimental and predicted values of the sheared area with an indica-

tion of ±10% relative error (red dashed line). The black arrow indi-
cates the point with a − 17% relative error
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once again, excellent agreement can be seen between the 
predicted and experimental data.

The predictive ability of the CFR-d1 model was further 
tested using direct shear test results obtained on the same 
three surfaces tested by Casagrande et al. (2018). The mortar 
replicas of the different surfaces were tested under normal 
stress ranging from 20 to 500 kPa. The surface parameters 
relevant to making a CFR-d1 prediction are given in Table 6. 
Note that the same mortar mixture used by Casagrande et al. 
(2018) was used to make new replicas that were cured in 
water for four weeks and new data were obtained. A series 
of triaxial tests were conducted to characterise the mate-
rial strength under a level of confinement consistent with 
high-stress values expected at the few contact points within 
a rough discontinuity (on the order of 30–50 MPa). From 
these tests, an mi value of approximately 13 was obtained 
(see Table 6), as opposed to approximately 35 (Casagrande 
et al. 2018), which seems too high for a mortar. Except for 
this difference in material characterisation, the shear tests 
were conducted as per Casagrande et al. (2018), and in the 
interest of conciseness, the experimental methods are not 
repeated here.

Figure 7 shows that most of the CFR-d1 predictions are 
relatively close to the experimental values of peak and shear 
strength.

Finally, all the results are summarised in Fig. 8, which 
also shows a distribution of relative errors. In 80% of the 
cases, the discontinuity shear strength can be predicted 
within ±10% of the experimental value, which can be con-
sidered an excellent result.

5  Conclusions

This paper focused on establishing a continued fraction 
regression (CFR) model to use as an alternative to the New-
castle discontinuity shear strength (NDSS) model and to 
address issues of numerical implementation and compu-
tational cost. The model was trained and tested using an 
extensive dataset of sheared facet data.

Table 5  Peak and residual shear strength derived from the values 
of NCFo predicted by the CFR-d1 model (see Table  4) for the 2  m 
per 2  m surface tested by Jeffery et  al. (2022). Input parameters: 
sdi = 0.143, �ci = 68.7 MPa, mi = 8.5, and tan(�b) = 0.732

�′
n
 = 5 kPa �′

n
 = 5 kPa �′

n
 = 14 kPa �′

n
 = 22 kPa �′

n
 = 31 kPa

�p (kPa) 12.4 12.4 28.6 42.9 56.8
�r (kPa) 4.7 4.7 12.5 19.5 26.5

Fig. 6  Evolution of experimen-
tal and CFR-d1 predicted values 
of shear strength (peak and 
residual) with normal effec-
tive stress for the 2 m per 2 m 
surface tested by Jeffery et al. 
(2022)

Table 6  Parameters of the S, M, and R surfaces (see Casagrande et al. 
2018) tested in the direct shear test under constant normal stress

Surface

S M R

Dimensions (mm) 91*91 91*90 88*91
Spatial resolution (mm) 0.5 0.5 0.5
Number of facets 66,248 66,248 66,248
sdi for the whole surface in the 

direction of shearing (rad)
0.107 0.138 0.232

�ci (MPa) 49.7 49.7 60.1
mi 13.6 13.6 13.9
tan ( �b) 0.66 0.66 0.75
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In establishing the dataset, clear correlations were 
observed between the peak shear strength and standard devi-
ation of gradients of the surfaces, all other variables being 
constant. This observation suggests that the standard devia-
tion of gradients is a reliable indicator of surface roughness.

The training and testing of the CFR model returned low 
values of mean squared error, indicating that the model can 
satisfactorily predict the number of contributing facets for 
given input combinations. Furthermore, the CFR model pre-
dictive capability was tested against experimental data of 
shear area and shear strength, and 75% of the predictions 
fell within 10% of experimental values, which confirms the 
excellent performance of the CFR model.

The findings of this study suggest that the trained CFR 
model can efficiently be used as an alternative to the NDSS 

model, offering a much simpler implementation and much 
lower computational times.

Appendix: Details About the NDSS Model 
(Casagrande et al. 2018)

In this appendix, some information about the Newcas-
tle discontinuity shear strength (NDSS) model, originally 
published in Casagrande et al. (2018) and reproduced here 
for clarity, is presented. The original model was derived in 
terms of total stress because the authors did not consider the 
contribution of fluid pressure within the discontinuity. In 
the rest of this appendix, the model is presented in terms of 

Fig. 7  Evolution of the experimental and CFR-d1 predicted values of shear strength (peak and residual) with normal effective stress for the S, M, 
R surfaces tested by Casagrande et al. (2018)
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effective stress and effective parameters, as it is well recog-
nised that the hydromechanical response of rock discontinui-
ties is governed by effective stress (Brady and Brown 2004).

Figure 9a shows an example of a 110 mm per 110 mm 
triangulated surface (a) with a data point every 0.5 mm in 
both the X and Y directions. Upon shearing, the discontinu-
ity dilates along the steepest asperities, referred to as active 
facets or contributing facets (see the sketch in Fig. 9b). The 
NDSS model assumes that only active facets are in contact 
because of dilation upon shearing. As a result, the vertical 
effective force exerted on the whole discontinuity (noted 
F′macro) is uniformly distributed among all active facets that 
are subjected to a local effective vertical force f′local_i equal 
to:

where NCF is the total number of contributing facets (see 
Fig. 9b). The local effective stress, normal to the shear plane 
of the discontinuity, is then estimated for each contributing 
facet as:

where Aip is the area of the facet projected on the XY plane 
(see Fig. 9c), which depends on the spatial resolution. Given 
the spatial resolutions along X and Y,  ResX and  ResY, the 
projected area is equal to Aip =

ResX×ResY

2
 . In this study, 

(12)f �
local_i

=
F�
macro

NCF

(13)��
local_i

=
f �
local_i

Aip

 ResX =  ResY and Aip is simplified as Aip =
Res2

2
 , where Res is 

the spatial resolution.
In the dataset used for this study, the digitised surface has 

a spatial resolution of 1 mm in both the X and Y directions, so 
Aip = 0.5mm2.

The NDSS model considers two possible asperity inter-
action mechanisms: a facet of the top wall can slide on its 
bottom counterpart along surface Ai, or the facets (top and 
bottom) can be sheared along a horizontal plane, i.e., along 
surface Aip (see Fig. 9c). Assuming that the material shear 
strength arises from a cohesive term (c) and a frictional com-
ponent, the force required to shear each contributing facet, 
denoted fshear_i, is simply the shear strength for a given nor-
mal stress multiplied by the sheared area of each facet Aip:

where �′ is the effective Coulomb friction angle of the mate-
rial, c is the cohesion, Aip is the area of the facet projected on 
the XY plane (see Fig. 9) and �′

local_i
 is the local vertical effec-

tive stress acting on facet i [see Eq. (13)]. The peak shear 
force fpeak is the sum of the contribution of all active facets:

The shear stress is computed as the peak force divided by 
the total projected area of the surface:

(14)fshear_i = Aip ⋅

(

c + ��
local_i

⋅ tan(��)
)

(15)fpeak =

Ncf
∑

i=1

fshear_i =

Ncf
∑

i=1

Aip ⋅

(

c + ��
local_i

⋅ tan(��)
)

Fig. 8  a Comparison of the experimental (measured) and CFR-d1 predicted shear strength (peak and residual) data from Figs. 6 and 7. The con-
tinuous line has a one-to-one gradient. b Distribution of relative errors for all data from Figs. 6 and 7
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�p =
fpeak
Atot

=
Ncf
∑

i=1

Aip ⋅
(

c + �′
local_i ⋅ tan(�

′)
)

Atot

=
Aip ⋅

(

c + �′
local_i ⋅ tan

(

�′)
)

Ncf

Atot

For 100 mm per 100 m square samples, as tested by Casa-
grande et al. (2018), Atot is equal to 10,000  mm2.

The residual shear strength is calculated from the peak 
shear force by considering that the difference between the 
peak and residual forces is the cohesive contribution of all 
sheared asperities:

(16)fresidual = fpeak − c ⋅ Ncf ⋅ Aip

Fig. 9  a Example of a triangulated rock surface. b A 2D schematic 
representation of discontinuity dilation upon shearing with a redistri-
bution of the load applied to the discontinuity on the steepest, i.e., 
contributing, facets. (c, left): Representation of four adjacent data 

points in the XY plane on which triangular facets are defined and 
schematic representation of a facet of surface Ai and projected surface 
Aip (c, right).  ResX and  ResY are the spatial resolution in the X and Y 
directions, respectively
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where fpeak is estimated as per Eq. (15), c is the material 
cohesion, Ncf is the total number of contributing facets and 
Aip is the facet area projected on the XY plane (see Fig. 9). 
The residual shear strength is then expressed as:
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